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Critical behavior of energy-energy, strain-strain, higher-harmonics,
and similar correlation functions
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The structure factor associated with general biquadratic correlation functions is calculated for an
n-component order parameter usinge-expansion techniques ind542e dimensions. The results apply to
energy-energy and strain-strain correlations as well as to correlations of higher harmonics in density wave
systems. We find the correlations of these secondary order parameters to be characterized by a correlation

length ĵ5 ĵ0@(T2Tc)/Tc#
2n, with the same n-dependent exponentn as for the correlation length character-

izing fluctuations of the primary order parameter, which is denoted byj. The amplitude ratioX̂[( ĵ0 /j0)
2 is

universal, and we obtainXT5gT/6g1O(e3) for quadratic order parameters transforming like a traceless spin
tensor inn-component space~with gT characterizing the divergence of the corresponding susceptibility! and
XE5a/6g1O(e3) for energy-energy correlations, wherea andg denote the usual specific heat and suscep-
tibility critical exponents, respectively. The universal amplitude ratio for the second harmonic in density wave
systems is given byXT with n52 and takes the valueX25e/202e2/1001O(e3), thus being very small. This
naturally explains previously puzzling experimental results for the critical behavior of the second harmonic
structure factor at the nematic–smectic-A2 transition of a thermotropic liquid crystal. Applications to sound
attenuation in liquids or solids close to critical transitions and to colloidal interactions in near-critical binary
mixtures are briefly discussed.@S1063-651X~97!12802-1#

PACS number~s!: 05.70.Jk, 64.60.Fr, 61.30.2v, 75.40.Cx
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I. INTRODUCTION

The direct relation between the scattering intensityG(q)
near a critical point and the Fourier transform of the tw
point correlation function

G~q!}E ddx

~2p!d/2
eiq•x^fW ~0!•fW ~x!& ~1!

has made the correlation function of central interest both
theorists and experimentalists. In Eq.~1! the integration ex-
tends over ad-dimensional system, withfW denoting an
n-component vector field.

The hypothesis of scaling asserts that, when the crit
temperature is approached, i.e., whenT→Tc , and qa!1
~where a is the lattice spacing!, the two-point correlation
function has the asymptotic form@1#

G~q,t !5x0t
2g f ~q2j2!, ~2!

which defines the scaling functionf (x2); the reduced tem-
peraturet is defined as

t[~T2Tc!/Tc .

The two-point correlation lengthj varies asymptotically
~which means in the limitt→0) as

j~ t !5j0at
2n. ~3!

*Present address: Service de Physique The´orique, CEA-Saclay,
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The susceptibility is obtained from the correlation function
zero momentumq50, and is asymptotically given by

x~ t ![G~0,t !5x0t
2g. ~4!

The exponentsg andn give the strength of divergence of th
susceptibilityx(t) and the correlation lengthj(t), respec-
tively, and are universal features of the physical system; t
depend only on a few parameters such as dimensionalid
and the number of componentsn of the order parameter.

Apart from a rather natural normalization off (x2), given
by

f ~0!51,
d f~x2!

dx2 U
x50

521, ~5!

the scaling functionf (x2) is universal to the same degree
the exponents@2#. The second normalization condition in E
~5! means thatj(t) is identified as the second-moment co
relation length defined through the second spatial momen
the correlation functionG(r )5^fW (0)•fW (r )&. It follows that
the structure factor can, at least for small values ofq2j2, be
written in the standard way as

G~q,t !5
x0t

2g

11q2j2
1O~q4!. ~6!

The amplitudesx0 and j0 are nonuniversal parameters d
pending explicitly on details of the interaction, lattice stru
ture, etc.

In this paper we extend the analysis to biquadratic co
lation functions which describe the fluctuations of seconda
quadratic local order parametersw(r ). These secondary or
der parameters show critical behavior due to a coupling
2267 © 1997 The American Physical Society
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the primary fluctuating fieldfW (r ). Two distinct choices for
the symmetry ofw(r ) emerge: the first choice is given by th
local energy density, which is defined by

wE~r ![f i~r !f i~r !. ~7!

The indices refer to then components of the fieldfW ; re-
peated indices are always summed over. One notes
wE(r ) is isotropic in then-component space. The secon
choice is an anisotropic secondary order parameter@3#,
which can be written as

wT~r ![f i~r !f j~r !, ~8!

with iÞ j . Experimental realizations of this order parame
include quite generally anisotropic couplings in ordering s
tems such as strains in certain crystals~see Sec. III A!.

As will be shown in detail in Sec. III B, the fieldwT for
the special casen52 corresponds to the second harmon
order parameter in density wave systems. The correlation
fluctuations in this secondary order parameter have rece
been determined experimentally for a liquid crystal at
nematic–smectic-A transition using high-resolution x-ra
scattering techniques@4#. There it was found that the corre
lation length associated with fluctuations in the second h
monic order parameter scaled rather differently from the c
relation length associated with the first harmonic, which
the primary order parameter. Fitting the data to a sin
Lorentzian, the two exponents for the divergence of the c
relation length differed markedly, and hyperscaling was
verely violated for the second harmonic. Some of the res
described in the present paper were reported previously
gether with a detailed comparison with additional measu
ments, leading to an interesting reinterpretation of these
perimental results in accord with scaling theory@5#. In all of
what follows, a symbol with a hat stands for the two versio
corresponding to the choicesŵ5wE andŵ5wT , which are,
only if necessary, distinguished by an indexE or T, respec-
tively.

To summarize our results, the two-point correlation fun
tion of the secondary order parametersŵ can be written in
the same form as Eq.~2!, namely,

Ĝ~q,t !5x̂0t
2ĝ f̂ ~q2ĵ2!, ~9!

and constitutes a subclass of biquadratic correlation fu
tions obtained from the general four-point correlation fun
tion by a pairwise contraction of field coordinates. It is a
sumed that the identical normalization conditions~5! apply
to the biquadratic scaling functionf̂ (x2), which naturally
defines the biquadratic correlation lengthĵ. The critical be-
havior at zero momentum (x50) is well known; the expo-
nentsgE[a andgT are different from the susceptibility ex
ponent g for the primary order parameterf, and are
determined by the respective crossover exponents, see
II A.

Interesting information is obtained about the critical b
havior at finite momentum, which can be inferred from t
scaling functionsf E(x

2) and f T(x
2) for x.0. Specifically, it

is found that the correlation lengths of all biquadratic a
bilinear correlation functions scale with the same expon
at
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n, contrary to what had been initially inferred from expe
ments on second harmonic scattering in liquid crystal s
tems @4#. Ratios of quantities which diverge with identica
exponents commonly approach universal values in
asymptotic limit @6#. The universal amplitude ratios of th
different correlation lengths are given by

XE[S j0
E

j0
D 25e

42n

12~n18!
2e2

~n12!~13n144!

12~n18!3
1O~e3!

5
a

6g
1O~e3!, ~10!

XT[S j0
T

j0
D 25e

41n

12~n18!
1e2

n2218n288

12~n18!3
1O~e3!

5
gT

6g
1O~e3!. ~11!

One important feature of these universal ratios is that the
term in these series is already of ordere, leading to a loga-
rithmic divergence ase→0. Experimentally relevant is the
independent observation that the combinatorial prefactor
Eqs.~10! and ~11! are quite small.

In Sec. II we first reproduce the critical behavior for ze
momentum; then we present oure-expansion results for the
scaling functionf̂ (x2) for small momentumx!1 and in the
limit x→`. Based on the series expansion off̂ (x2) in terms
of x2, we give a closed-form approximant forf̂ (x2) which
interpolates between and reproduces these two limits.
add a discussion of corrections to scaling and the li
e→0. The latter limit corresponds to the dimensional
d→4 for normal short-ranged interactions, but also includ
the experimentally relevant dimensionalityd→3 for dipolar
interactions@7#. Section III contains the application of thes
results to density wave systems, strain-strain correla
functions, and colloidal interactions in near-critical bina
mixtures, followed by a discussion and a brief outlook.

II. BIQUADRATIC CORRELATION FUNCTIONS

A. Scaling at zero momentum

The behavior of theq50 part of the structure factor o
secondary order parameters can be understood in terms
simple scaling model for the free energyF @8#,

F~ t,hT!;utu22aw~hT /utuFT!, ~12!

whereFT5nyT is the crossover exponent associated w
the generating fieldhT , which couples linearly towT ; like-
wise, the energy operatorwE couples to the temperaturet.
The scaling functionw(x) satisfiesw(0)51. From the
above ansatz one immediately obtains

^wT
2&C5]2F/]hT

2;utu2gT, ~13!

where the subscriptC denotes the cumulant an
gT5a2212FT . Using the result@9#
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yT522e
2

n18
1e2

n2218n288

2~n18!3
1O~e3!, ~14!

one obtains for the exponentgT the value@8,4#

gT5e
n14

2~n18!
1e2

~n22!~n14!~n114!

4~n18!3
1O~e3!. ~15!

The analogous calculation for the energy-energy correlat
trivially yields gE5a. One notes thatgT as well asa are of
leading ordere.

B. Scaling at small finite momentum

The Hamiltonian appropriate for the study of the critic
scattering of higher-ordern vector correlation functions ca
be written in standard form as@10#

H/T5E
q
H 12 ~r 01q21L22q4!f i~q!f i~2q!J

1
u

~2p!d
E
q
E
q8
E
q9

f i~q!f i~q8!f j~q9!

3f j~2q2q82q9!, ~16!

with the shorthand notation*q[*ddq, and withL represent-
ing a smooth cutoff@11#. In the resulting equations we se
L51 ~the universal results do not depend onL). The two-
point correlation functions of the quadratic local fields d
fined in Sec. I are then given by

Ĝ~q,r 0![^ŵ~q!ŵ~2q!&

5
1

~2p!d
E
p
E
p8

^f i~p!f j~q2p!f i~p8!

3f j~2q2p8!&C , ~17!

with i5 j for correlations of the energylike local fieldwE or
iÞ j for the traceless local fieldwT . Expanding up to first
order in the four-point vertexu ~which is a two-loop expan-
sion; see Fig. 1!, one obtains the following expression for th
correlation function:

Ĝ~q,r !

M̂
52V~q,r !216uN̂V~q,r !2, ~18!

with the combinatorial factorsN̂ andM̂ given by

FIG. 1. Graphs that have to be evaluated at finite external
mentumq and finite bare massr 0. The graph in~a! is defined by
V(q,r 0), the graph in~b! is then given byV(q,r 0)

2, and the graph
in ~c! is canceled by mass renormalization.
ns

l

-

N̂5HNE511n/2,

NT51,
~19!

M̂5H ME5n,

MT5n~n21!,
~20!

V denotes the subgraph defined by

V~q,r 0![
1

~2p!d
E
p
G~0!~p1q!G~0!~p!, ~21!

with the bare propagatorG(0) given by

G~0!~q!5
1

q21r 01L22q4
. ~22!

The integrals corresponding to the first and second term
Eq. ~18! which are proportional toV andV2 are graphically
represented in Figs. 1~a! and 1~b!, respectively. The graph in
Fig. 1~c! is canceled by appropriate mass renormalizati
i.e., by replacing the bare parameterr 0 by its renormalized
value, the true susceptibilityr[1/x;tg @10#. Note that at
this level of perturbation theory, no such renormalizati
takes place for the four-point coupling strengthu.

Using the result forV derived in the Appendix, Sec. 1
and expanding in powers ofe, the correlation function~18!
can be written as

Ĝ~q,r !

M̂Kdx̂0

5Ĉ2 lnr1
ẑ~u!

2
ln2r2

q2

6r
†12 ẑ~u!lnr ‡

1O~e2,u2,eu,q4!, ~23!

with

x̂0[@12 ẑ~u!#S 11
u

u*
2eN̂

n18
D , ~24!

and Ĉ[22/@12 ẑ(u)#. In the above equation,u* denotes
the fixed-point value ofu, and is given by@10#

u*5
e

4Kd~n18!
1O~e2!5

2ep2

n18
1O~e2!. ~25!

The functionẑ(u) reads

ẑ~u![
u

u*
e

2
2

2eN̂

n18
. ~26!

For the calculation of critical exponents and amplitude rati
one fixesu at its fixed point valueu* ; the critical exponent
ĝ can be obtained from Eq.~23! by the usual method o
exponentiating logarithms according to the expansion

r2ĝ/g512~ ẑ1e2 ẑ2e
2!lnr1 1

2 ẑ1
2e2ln2r1O~e3!, ~27!

and is given in terms of the functionẑ(u) by

ĝ/g5 ẑ~u* ![ ẑ1e2 ẑ2e
21O~e3!. ~28!

o-
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Note that, sinceẑ(u) is only known to ordere from our
two-loop expansion, we cannot obtainẑ2. But, as will be
shown below, we can in fact calculate critical amplitude
tios up toO(e2). For these calculations we need the valu
of ẑ2 as well, which are taken from the literature. With th
well-known values for the susceptibility and heat-capac
exponents@10#

g511e
n12

2~n18!
1e2

~n12!~n2122n152!

4~n18!3
1O~e3!,

~29!

a5e
42n

2~n18!
2e2

~n12!2~n128!

4~n18!3
1O~e3!, ~30!

andgT given by Eq.~15!, one obtains the explicit values

z1
E5

42n

2~n18!
, ~31!

z2
E5

~n12!~13n144!

2~n18!3
, ~32!

z1
T5

41n

2~n18!
, ~33!

z2
T5

88118n2n2

2~n18!3
. ~34!

With these notations the biquadratic correlation function
the fixed-point coupling strengthu* can be written as

Ĝ~q,r !

M̂Kdx̂0

5Ĉ2
g

ĝ
1

gr2ĝ/g

ĝ
ĝ~q2/r !1O~e2!, ~35!

with the scaling functionĝ(x2) for small argumentsx2!1
given by

ĝ~x2!512
ĝ

6g
x21O~e3,x4!. ~36!

Comparison with the definition of the scaling functio
f̂ (x2), Eq. ~9!, and using the second normalization conditi
in Eq. ~5!, one immediately identifiesf̂ (ĝx2/6g)5ĝ(x2) and
thus

ĵ25
ĝ

6g
r211O~e3!. ~37!

Noting that, for the Hamiltonian given by Eq.~16!, the bi-
linear correlation lengthj can be calculated to b
j5r21/21O(e2), we obtain our two main results from Eq
~37!: ~i! the bilinear correlation lengthj and the biquadratic
correlation lengthsjE and jT scale with the same expone
n to leading order ine, in agreement with the general scalin
hypothesis, stating that there is a single length scale in
asymptotic limit; and~ii ! the ratio between the two correla
tion lengths, defined byX̂[ĵ2/j2, approaches the universa
value
-
s

y

t

e

X̂[
ĵ2

j2
5

ĝ

6g
1O~e3! ~38!

in the asymptotic limit. Using the values forẑ1 and ẑ2 one
obtains the universal amplitude ratios given in Eqs.~10! and
~11!. For negative values ofĝ/g ~as, e.g., observed fo
energy-energy correlation forn52) one therefore obtains
negative value for the amplitude ratioX̂. This at first glance
surprising result can be understood since in this case
singular contribution to the biquadratic susceptibility itself
negative, leading to a cusplike finite maximum at the critic
point. A negativeX̂ then corresponds to an attenuation of t
singular contribution for increasing values ofq, as expected.

C. Scaling at the critical point

Right at the critical point, defined byr50, the biquadratic
correlation function scales asymptotically like

Ĝ~q,r50!;qĥ22, ~39!

defining the exponentĥ, which can be expressed in terms
the other exponents via the scaling relation

22ĥ5
ĝ

n
. ~40!

From the definition of the correlation function~18! and the
explicit expression forV(q,0), derived in the Appendix,
Sec. 2, one obtains

Ĝ~q,r50!

M̂Kd

5~11e/2!FeS 12
p2

12D22 lnq„12 ẑ~u!lnq…G
1O~u2,e2,ue!, ~41!

with ẑ(u) given by Eq.~26!. From the above expansion on
readily obtains 22ĥ52ẑ(u* )1O(e2); using g/n52
1O(e2) and Eq.~28!, one confirms the scaling relation~40!
to ordere. Using the knowledge aboutĝ to ordere2, and the
scaling relation~40!, the exponentsĥ are explicitly given by

hE522e
42n

81n
1e2

~21n!~44113n!

~n18!3
1O~e3!, ~42!

hT522e
41n

n18
1e2

88118n2n2

~n18!3
1O~e3!. ~43!

These exponents are quite large, unlike the result forh for
the bilinear correlation function, and higher-order correctio
to the expansion of the scaling functionĝ(x2) for small ar-
guments are expected to be important. Using the definitio
the scaling functionĝ(x2), Eq. ~35!, the functional behavior
for large argumentsx@1 can be calculated to be

ĝ~x2!5~112ĝ/g!xĥ221O~e2!. ~44!

A heuristic expression forĝ(x2), valid for both small and
large arguments, will be presented in Sec. II F.



th
,
m
hi

th

e

he
ox

tio
m

g

nt
to
ow
ou
-

al

re-
b-

ster
re-
nd

f
e

for

for

-

ra-

55 2271CRITICAL BEHAVIOR OF ENERGY-ENERGY, STRAIN- . . .
D. Corrections to scaling

In this section we discuss corrections to scaling due to
crossover from mean-field behavior, at high temperatures
the asymptotic critical behavior below the Ginzburg te
perature. This crossover can be calculated explicitly wit
the e expansion.

Generalizing the analysis of the scaling corrections for
specific heat by Rudnick and Nelson@12#, we write the bi-
quadratic correlation functionĜ at zero momentum and th
inverse susceptibilityr as

Ĝ~ t !5
M̂

2~42n!

1

u H F11
u

u*
~ t2e/221!G2ẑ121J

1O~u2,eu,e2!, ~45!

r ~ t !5tF11
u

u*
~ t2e/221!G2~n12!/~n18!

1O~u2,eu,e2!,

~46!

where t is the nonlinear scaling field associated with t
temperature. These functions can be derived from appr
mate solutions of the differential recursion relations@13–15#.
Combining these expressions, the biquadratic correla
function for finite momentum can be expressed to the sa
order of accuracy and including only terms up toq2 as

Ĝ~q,r !

M̂Kd

5
u*

euẑ1
H F11

u

u*
~r2e/221!G2ẑ121J

2
q2

6r
r2e/2F11

u

u*
~r2e/221!G2ẑ121

, ~47!

with ẑ1 andu* defined in Sec. II B. For the following, it is
useful to separate the regular part of the first term, leadin

Ĝ~q,r !

M̂Kd

5
u*

euẑ1
F11

u

u*
~r2e/221!G2ẑ1F̂~q,r !2

u*

euẑ1
,

~48!

with the scaling functionF̂(q,r ) defined by

F̂~q,r !512
q2

6r

euẑ1
u*

r2e/2F11
u

u*
~r2e/221!G21

. ~49!

Fixing the four-point coupling strength at its fixed-poi
value,u5u* , one reproduces the results from Sec. II B
O(e). In contrast, corrections to scaling arise from the sl
crossover connected with deviations of the four-point c
pling strengthu from its fixed-point value. Defining the ef
fective biquadratic susceptibility exponentĝeff as

ĝeff[2
] ln@Ĝ„q50,r ~ t !…/M̂Kd#

] lnt
, ~50!

one obtains~using as a definition for the effective norm
susceptibility exponent the expressiongeff[] lnr/] lnt) the
result
e
to
-
n

e

i-

n
e

to

-

ĝeff

geff
5

euẑ1
u*

r2e/2F11
u

u*
~r2e/221!G21

. ~51!

Using this relation, which holds beyond the asymptotic
gime since it includes corrections to scaling, one finally o
tains for the scaling function the result

F̂~q,r !512
ĝeff

6geff

q2

r
512

ĝeff

6geff
j2q2, ~52!

and, for the universal amplitude ratio,

X̂eff5
ĝeff

6geff
, ~53!

which is a generalization of the asymptotic result~38!. The
above relation has recently been checked using clu
Monte Carlo simulation techniques for energy-energy cor
lations in two- and three-dimensional Ising models, a
agrees well with the numerical results@16#.

E. Behavior for e˜0

Since the amplitude ratiosX̂ calculated in Sec. II B are o
leading ordere, it is important and interesting to examine th
limiting behavior fore→0. This corresponds to the limiting
behavior, obtained for normal short-ranged interactions
the ~unphysical! dimensionalityd54. However, it is impor-
tant to note that this upper critical dimension is reduced
long-ranged interactions, and is realized at the~physical! di-
mensionalityd53 for dipolar interactions@7#.

To obtain the correct behavior fore→0 from the expres-
sions~48! and~49!, it is importantnot to setu5u* , since the
coupling strengthu becomes marginally relevant ase→0,
leading to logarithmic correction terms. In the limite→0,
expression~48! for the biquadratic correlation function re
duces to

Ĝ~q,r !

M̂Kd

.
1

4uẑ1Kd~n18!
@122uKd~n18!lnr #2ẑ1F̂~q,r !,

~54!

with

F̂~q,r !.11
q2

3r

ẑ1
lnr

. ~55!

To obtain the limiting behavior as a function of the tempe
turelike scaling fieldt, one first has to evaluate Eq.~46! in
the limit e→0 andt→0, which yields

r.tS 2
eu

2u*
lnt D 2~n12!/~n18!

. ~56!

Inserting this into Eq.~54! and ~55!, one finally obtains

Ĝ~q,t !

M̂Kd

.
1

4uẑ1Kd~n18!
@122uKd~n18!lnt#2ẑ1F̂~q,t !

1O~ ln lnt !, ~57!
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with

F̂~q,t !.12
q2ẑ1
3t

†2uKd~n18!‡~n12!/~n18!~2 lnt !26/~n18!

1OS ~2 lnt !26/~n18!

t

ln lnt

lnt D . ~58!

Recalling the well-known result for the quadratic correlati
lengthj in the limit e→0 andt→0 @17#,

j2;
~2 lnt !~n12!/~n18!

t
, ~59!

and identifying from Eq.~58! the biquadratic correlation
length ĵ to be given by

ĵ2;
ẑ1~2 lnt !26/~n18!

t
, ~60!

for the ratio of the quartic and quadratic correlation leng
in the limit e→0 one finally obtains the result

ĵ2

j2
;

ẑ1
2 lnt

. ~61!

The universal amplitude ratioX̂, which was found to be pro
portional to e, is replaced by a logarithmic singularity a
e→0.

As already mentioned, the limite→0 is realized for cer-
tain dipolar Ising ferromagnets@18,19#. Measurements of the
biquadratic correlation lengthĵ could in principle be pos-
sible using sound-adsorption techniques~see Sec. III!, which
would allow a direct check of Eq.~59!–~61!.

F. Higher-order terms in q2

Using the expression forĜ in Eq. ~18! and the result for
V including higher powers ofq2 ~Appendix, Sec. 1!, the
biquadratic correlation function can be written as

Ĝ~q,r !

M̂Kdx̂0

5Ĉ2 lnr1
1

2
e ẑ1ln

2r1(
i51

` S 2q2

r D i

3S @12e ẑ1lnr1eY1~ i !#J~ i !

2
e

4
~122ẑ1!Q~ i !Y1~ i !G1O~e2!. ~62!

The constantsx̂0 andĈ were previously defined in Sec. II B
the numerical factorQ( i ) is defined by

S (
i51

`

~2x! iJ~ i !D 25(
i51

`

~2x! iQ~ i !. ~63!

The first four values of the constantsY1( i ), J( i ), and
Q( i ) are given in Table I. The inverse scaling functio
ĝ21(q2/r ) is obtained by dividing Eq.~62! by r2ĝ/g/
(ĝ/g), as was done in Sec. II B, leading to
s

ĝ21~x2!512(
i51

`

~2x2! iJ~ i !Fe ẑ12e2ẑ21e2ẑ1

3S Y1~ i !2
Q~ i !

4J~ i ! D G1O~e3!. ~64!

In contrast to the analogous results for the scaling function
bilinear correlations@2#, here the higher-order terms~in x2)
are of the same leading order ine as the term proportional to
x2, namely,O(e). It turns out that the Fisher-Burford ap
proximant@1#, which has been successfully used to appro
mate the quadratic scaling function@2#, does not reproduce
the epsilon expansion of the quartic scaling function. Fo
lucid discussion of different phenomenological scaling fun
tion approximants, see@20#. In the following, we present a
heuristic approximant for the scaling function which is va
both for small and large arguments,

ĝapp~x2!5

S 11
a1x

21a2x
41a3x

61a4x
81•••

11a2x
21a3x

41a4x
61•••

D ĥ/2

11~X̂1a1ĥ/2!x2
,

~65!

which reduces to the Fisher-Burford approximant ifai50
for i.1. Forx!1, one has

ĝapp~x2!512X̂x21O~x4!, ~66!

which, by construction, agrees with the asymptotic for
~36! and ~38!, and forx@1 ~and if aiÞ0 for at least onei
with i.1), one obtains

ĝapp~x2!5
xĥ22

X̂1a1ĥ/2
. ~67!

Clearly, the amplitude ofĝ(x2) for x@1 fixes the coefficient
a1. With the result~44!, one readily finds

a1512
7

6
e ẑ11O~e2!. ~68!

Each term in Eq.~64! of the order (x2) i determines a param
eterai ; going up tox8 one obtains for the coefficients th
values a253/101O(e), a352199/49001O(e), and
a452699/147 0001O(e), which reproduces the series i
Eq. ~64! up to ordere. In order to reproduce the higher term
including O(e2), one would have to knowa1 to O(e2),
which requires a three-loop calculation.

TABLE I. Values of the first numerical coefficients appearing
the scaling function.

J( i ) Y1( i ) Q( i )

i51 1
6 0 0

i52 1
60 1/2 1/36

i53 1
420 3/4 1/180

i54 1
2520 11/12 47/2520
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III. EXPERIMENTAL APPLICATIONS

In the following we discuss some experimental syste
where the biquadratic structure factor and the correspon
correlation length can or have been determined experim
tally. We distinguish three different mechanisms that all
correlations of quadratic~secondary! order parameters to b
measured.

~i! Local strains in a system close to a phase transi
usually couple to the order parameter. Due to symmetry
sons, the lowest-order coupling is linear in the strain a
quadratic in the order parameter. Measurements of str
strain correlation functions, for example via sound atten
tion experiments, include contributions proportional to
quadratic correlation functions and thus allow comparis
with our results. This will be the subject of Sec. III A.

~ii ! Colloids in near-critical binary mixtures act as loc
field and temperature perturbations, leading to mutual in
actions that are proportional to bilinear and biquadratic c
relation functions, respectively@21#. Under suitable condi-
tions, the field perturbation can be suppressed@22#, and the
resultant interaction, proportional to the energy-energy c
relation function, could be detected by light scattering e
periments. Comparison of the resultant decay lengthjE with
the correlation length of the binary mixture,j, would then
allow a determination of the universal amplitude ra
XE5(jE /j)

2'a/(6g) ~with the exponentsa andg taking
values according to the Ising universality class of the bin
demixing critical point!.

~iii ! Higher harmonics in density-wave systems a
coupled to the first-harmonic order parameter. At the criti
point, characterized by the singular behavior of the fir
harmonic order parameter, the higher-harmonic structure
tors contain contributions which are proportional to high
order correlation functions of the first-harmonic ord
parameter. Our results for the biquadratic structure fac
correspond to the singular part of the second-harmonic st
ture factor, as will be explained in Sec. III B.

A. Coupling to elastic degrees of freedom

Elastic deformations of liquids or solids are defined by
strain tensoreab, which is related to the displacement vect
u(r ) in the usual way by

eab[
1

2 S ]ua

]r b
1

]ub

]r a
D . ~69!

The order parameterfW (r ), governed by the Hamiltonian
~16!, in general couples to these deformations. In the lo
wavelength limit, the bare elastic Hamiltonian including t
coupling terms can be written as@23,24#

Hel /T5E
r
H 12 labgdeabegd1b~E!f if ieaa1bi j ab

~T! f if jeabJ .
~70!

Note that the bare coupling constants are only weakly te
perature dependent. In a typical sound adsorption exp
ment, one measures the frequency-dependent attenuatio
efficient, which is, via the fluctuation-dissipation theore
directly related to the generalized elastic correlation funct
s
g
n-

n
a-
d
n-
-
-
n

r-
r-

r-
-

y

l
-
c-
-

r
c-

e

-

-
ri-
co-
,
n

Cel(v,q)5*dt̃ eiv t̃ ^eab(0,q)eab( t̃,2q)& @25#, with t̃ de-
noting time. Based on the simple Hamiltonian~70! we dis-
tinguish two contributions to the frequency-dependent stra
strain correlation function:~i! a temperature-independen
background at zero frequency and zero wave vector, pro
tional to the inverse elastic modulus tensorl, and~ii ! singu-
lar contributionsCel

(E)(v,q) andCel
(T)(v,q), which arise for

nonvanishing constantsb(E) and b(T), respectively, and are
due to coupling of the elastic strain to the order parame
The first is the isotropic coupling, and is present in liqui
and solids alike, the latter anisotropic coupling is on
present in solids and depends on the detailed lattice struc
These frequency-dependent correlation functionsCel

(E) and
Cel
(T) are related to the equal-time structure factorsGE(q) and

GT(q), which were defined and calculated in Sec. II, simp
by the Fourier transform

Ĝ~q!;E
2`

`

dv Ĉel~v,q!, ~71!

where the caret stands for the subscriptsT or E, as in Sec. II.
In analyzing experimental results, such an integral mi

be hard to perform in practice. Alternatively, one can use
dynamic scaling hypothesis, which predicts the frequen
dependent correlation functions to have the scaling form@26#

Ĉel~v,q!;t2zn2ĝŶ~q2ĵ2,vt!. ~72!

Here z denotes the dynamic exponent. So in principle t
correlation lengthsjE and jT might directly be calculated
from Cel(v,q) by fitting data at constant scaling variab
vt, wheret;t2z is the relaxation time, which diverges o
approaching the critical point.

The energy-energy correlation function can thus be m
sured via sound attenuation in liquids close to a binary
mixing or liquid-gas critical point; experimental realization
for the latter include ultrasonic attenuation in xenon near
critical point @27#. One notes that in order to determine th
universal amplitude ratio between the two correlati
lengths, one has to determine the ordinary correlation len
independently with some light-scattering experiment.

Sound attenuation in crystals allows to access the ten
rial structure factor as well@24#. The most prominent ex-
amples are structural phase transitions in perovskites, w
measurements of longitudinal and transverse modes a
different lattice directions allow independent determinatio
of the structure factorsGE(q) andGT(q) @28,29#.

B. Density wave systems

The order parameter of density waves~DW’s! in a
uniaxial system is characterized by the complex amplitu
c15c1

x1 ic1
y , determined by the contribution Re(c1e

iq0z)
to the density modulation, which runs parallel to thez axis.
The wave vectorq0 is determined by the wavelength of th
modulation. Since the order parameterc1 has two indepen-
dent components, the critical behavior associated with a c
tinuous symmetry breaking of the thermal average ofc1 is
described by theXY-model universality class. Examples i
solids include charge density wave systems such as Nb3
@30#, spin density wave systems such as Cr@31#, and rare-
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earth magnets. Two-dimensional freezing from a hexa
fluid to a solid is another example@32#. In three-dimensiona
complex fluids, such behavior is provided by the smecticA
phase of thermotropic liquid crystals@33#. The nematic phase
of these rodlike liquid crystal molecules shows orientatio
order, but is positionally disordered. The nematic–smec
A phase transition corresponds to the establishment of a
dimensional mass density wave in the three-dimensio
fluid with the mass density wave along the direction of o
entational order. The smectic phase and the critical fluc
tions associated with the onset of smectic ordering can
represented in terms of the above defined order param
c1 @34#. High-resolution x-ray scattering and ac-calorime
experiments have indeed shown that many features of
nematic–smectic-A phase transition in liquid crystals ar
well described by the three-dimensionalXYmodel, although
the correlation lengths exhibit weakly anisotropic scali
@35#.

Recently, there has been considerable interest in the c
cal behavior of higher harmonics, associated with the con
butions Re(cme

imq0z) to the density modulation. Theoret
cally, the exponents describing correlation functions of
order parameterscm were derived from theXYmodel which
describes the leading order parameterc1 @8#, and the results
were nicely confirmed by measurements of the bond or
tational order harmonics in hexatic liquid crystals@36#.

More recently, experiments on the nematic–smecticA2
(N–Sm-A2) transition in the polar thermotropic liquid crys
tal material 48-n-heptyloxycarbonylphenyl-48-(49-cyan-
obenzoyloxy! benzoate~7APCBB! succeeded in observin
the critical fluctuations associated with the second harmo
of the DW order parameter@4#. Although these experiment
confirmed the theoretical predictions for the secon
harmonic susceptibilityx2 fits of the second-harmonic struc
ture factorS2(q) to a single Lorentzian shape yielded corr
lation lengthsj i2 and j'2, which seemed to scale ver
differently than their first-harmonic counterparts. Very clo
to the transition, the former were at least an order of mag
tude smaller than the latter at the same temperatures.
tempts to modify the Lorentzian shape failed to change th
conclusions.

These results were very surprising: a different scaling
the correlation lengthsjm’s for the different harmonics
would imply that theN–Sm-A2 transition involves more
than one critical length scale, and that it cannot be sim
described by theXY model. Furthermore, the fitted expo
nentsn i2 andn'2 severely violated the hyperscaling relatio
2n'21n i2522a, with no explanation. The results pre
sented in this paper clarify the critical behavior of high
harmonics in DW and similar systems. Specifically, all t
harmonics are still dominated by the critical behavior of t
XY model, andjm

2 5Xmj1
2 whereXm is a universal number

in particular,X25XT with n52, which was calculated in
Sec. II. SinceXm may be quite small, the structure factor
themth harmonicSm(q) may be strongly influenced by it
bare~noncritical! value. Furthermore, since at the transiti
Sm;qhm22, with large values ofhm , deviations from the
Lorentzian shape are also important. These theoretical re
have been used to reinterpret the experimental results of
@4#, together with some measurements@5#.
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To proceed, we define the ‘‘local’’mth harmonic order
parameters as the slowly varying complex functionscm(r )
determining the density:

r~r !5r01Re(
m51

`

cm~r !exp~ iq0mz!. ~73!

In the most general case, one should treat all thecm’s as
competing order parameters. In the absence of coupli
eachcm would undergo a separateXY-like phase transition,
at a temperatureTm , described by the Hamiltonian

Hm5E ddr H 12 rm0@ ucmu21j imb
2 u¹ icmu21j'mb

2 u“'cmu2#

1umucmu4J . ~74!

The distinct prefactorsj imb
2 and j'mb

2 of the parallel and
perpendicular gradient terms take into account the exp
mental fact of anisotropic correlation lengths. We must a
take into account the coupling terms@5#

Hm, int5mmE ddr ~c1
mcm*1c1*

mcm!. ~75!

The correlation functions of the secondary order paramet
cm’s with m.1, can in principle be derived from Eqs.~74!
and ~75!.

AssumingTm to be far enough belowT1, one has a single
phase transition atTc5T1, with the leading two componen
order parameterc1. Near this transition, we can neglect th
self-interaction of thecm’s, and setum50 in Eq. ~74!. Thus
the cm’s for m.1 can be treated in the harmonic approx
mation, and we can solve the partition function forcm ex-
actly in terms of the correlation functions ofc1. For ex-
ample, the average density modulation with the wave vec
mq0ẑ is determined by

Cm[^cm&5mmxmb̂ c1
m&, ~76!

wherexmb51/rm0 is the bare susceptibility for themth har-
monic. Sincexmb is not singular atT1, the singularity comes
only from ^c1

m&}utubm, where t5(T2Tc)/Tc , bm52
2a2fm andfm is the crossover exponent associated w
mth order anisotropy near the rotationally invariantXY
model fixed point@8#. Specifically,f2 is the crossover expo
nent for a uniaxial anisotropy term, proportional
Re(c1

2)5(c1
x)22(c1

y)2 or to Im(c1
2)52c1

xc1
y[2wT . In-

deed, the experiments on bond orientational harmonics c
firmed these predictions@36#.

The above theory can now be extended to the struc
factor @37,38#

Sm~q!5^cm~q!cm* ~q!&5Smb~q!1mm
2Smb~q!2S̃m~q!,

~77!

wherecm(q) is the Fourier transform ofcm(r ) and

Smb~q!5
kBTxmb

11j imb
2 qi

21j'mb
2 q'

2 ~78!
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is the baremth harmonic structure factor. Here

S̃m~q!5^c1
m~q!c1*

m~q!& ~79!

has to be calculated with theXY model HamiltonianH1
@39,40#. Asymptotically close toT1, and for very smallq,
Smb(q) is practically temperature independent, and the div
gent part ofSm is proportional toS̃m , which we calculate
next. However, the experimental data usually extend ov
range of momentaq in which theq dependence ofSmb can-
not be ignored@5#. This fact may be associated with th
physical nature of the polar material, where the smecticA2
phase may be close to the transition into the smecticA1
phase.

We next discuss the correlation functionS̃m(q). Apart
from a trivial phase shift, which interchanges the real a
imaginary parts, we have seen that the local field Re(c1

2)
corresponds to the tensorial operatorwT with n52, which
was introduced and defined in Sec. I. Consequently,
structure factorS̃2(q) is proportional to the biquadratic cor
relation functionGT(q) with n52, which has been calcu
lated in Sec. II. The higher harmonics (m.2) correspond to
operators which are of higher order in the primary fieldf,
which have not been considered in this paper.

In analogy to the results for biquadratic correlation fun
tions of Sec. II, one expects the scattering functions for
harmonics to be dominated by the critical behavior of
XYmodel represented byH1; therefore they should have th
asymptotic scaling form S̃m(q)5xmgm(q

2j1
2), where

xm;utu2gm, with 2gm522a22fm @4,8#, andgm is a uni-
versal scaling function@6#. For x!1, gm(x

2) may be ex-
panded in powers ofx2 and thus be approximated by
Lorentzian, that is,gm(x

2)51/@11Xmx
21O(x4)#, andXm

is a universal amplitude ratio @5#. Rewriting
S̃m(q)5xm /@11jm

2 q21•••#, this yields jm
2 5Xmj1

2

5Xmj10
2 utu22n; that is,all the harmonic correlation length

scale with thesameXY model correlation length exponen
n, but with different amplitudes. The ratios of these ampli
tudes,Xm , are universal. Indeed, oure-expansion calcula-
tions in Sec. II confirm these expectations for the ca
m52. In addition, these expansions show thatXm can be
small compared to unity, causing theq dependence ofS̃m to
become dominant only very close toTc . For x@1,
gm(x

2);x2(22hm), with 22hm5gm /n. For m.1, hm is
quite large, and we expect significant deviations from
Lorentzian shape at largex. To approximate the crossove
between these limits, one can use the approxim
ĝapp(x2), given in Eq.~65!.

Considering the isotropic case (j imb5j'mb), the results
derived in Sec. II can be directly applied. For the experim
tally relevant case of anisotropic correlation lengths (j imb
Þj'mb), one can still use our results by making the repla
ment j1

2q25j i1
2 qi

21j'1
2 q'

2 . In Ref. @5# experimental data
were fitted using the Fisher-Burford expression, which f
lows from our extended approximant~65! by settingai50
for i.1; the resulting expression reads

S̃2~q!5
kBTx2@11a1~j i1

2 qi
21j'1

2 q'
2 !#h2/2

11~X21a1h2/2!~j i1
2 qi

21j'1
2 q'

2 !
. ~80!
r-

a

d

e

-
ll
e

e

e

nt

-

-

-

Determining the parameters occurring inS2b(q) from fits far
from the nematic–smectic-A2 transition, and using these va
ues for all temperatures, the parameters occurring inS̃2(q)
had been set to the following values:h2 at 22g2 /n'1.5
and j i1 and j'1 at their values determined fromS1(q) at
each temperature.X2 was set at itse-expansion value of
0.04, as given by Eq.~11! and usingn52. Using the Fisher-
Burford approximant~80! in Eq. ~77!, the structure factor
S2 was fitted for 1025,t,1024, close toTc , and good fits
were obtained fora1'0.01. Settinga1 at this value for all
temperatures, one was left with a single temperatu
dependent parameterm2

2x2; the resultant fits to both the
transverse and longitudinal scans over the complete temp
ture range fromt;1022 to t;1025 were very good@5#.

As noted already in Sec. II F, the Fisher-Burford appro
imant gives a good description of data but is not consist
with a systematic expansion in powers ofe. However, setting
e51, one can obtain the value ofa1 from our epsilon-
expansion results by matching the general expression~65!
with ai50 for i.1 to the asymptotic result valid in the limi
x2@1, Eq. ~44!; this yields the estimatea1.0.07, which is
considerably larger than the experimentally determin
value. Clearly, a fit of the experimental data using the
tended scaling function~65! would be desirable.

IV. DISCUSSION

The momentum-dependent scaling behavior of biq
dratic correlation functions has been determined. Depend
on the symmetry of the quadratic fields in then-component
space, one either describes energy-energy correlations or
relations of a local operator which transforms like a tracel
tensor in the component space. The latter correlation fu
tion describes strain-strain correlations in certain anisotro
solids and, for the special casen52, describes the fluctua
tions of the second-order harmonic in density-wave syste
We show that the exponentn, which measures the diver
gence of the correlation length, is the same for the biq
dratic and the regular quadratic correlation function, wh
indicates the existence of a single diverging length scale.
ratios between the quadratic and biquadratic correla
lengths are universal and proportional toe; also, the numeri-
cal prefactors of these ratios are quite small.

This theory is completely consistent with the experime
tal data on the second harmonic critical fluctuations
7APCBB, including thee-expansion estimate forX2, as has
been shown in detail in Ref.@5#. It would be most valuable to
search for similar effects in other systems withXY-like DW
ordering. Also, the critical behavior of energy-energy cor
lations or correlations of other secondary order parameter
systems showing continuous phase transitions would pro
more insight into the interesting phenomena discussed in
paper.

Some preliminary Monte Carlo simulations of two- an
three-dimensional Ising systems exhibit good agreem
with the nonasymptotic amplitude-exponent relation~53! for
energy-energy correlation@16#. Extensions of these numer
cal results into the asymptotic regime and for vector or
parameters would be useful to check our results, and co
provide an independent access to the experimentally rele
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numerical values of the universal amplitude ratios in th
dimensions.
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APPENDIX: EVALUATION OF THE INTEGRALS

In this section we determine the integralV defined by

V~q,r 0![
1

~2p!d
E
p
G~0!~p1q! G~0!~p!. ~A1!

It is convenient to introduce a smooth cutoff and define
bare propagator as@11#

G~0!~p![
1

r 01p21L22p4
5

1

r 01p2
2

1

L21p2
1O~r 0!.

~A2!

Thus, the integralV can toO(r 0
0) be written as

V~q,r 0!5E ddp

~2p!d S 1

p21r 0
2

1

L21p2D
3S 1

@p1q] 21r 0
2

1

L21@p1q#2D
[I11I22I32I4 . ~A3!

The four product integrals can be solved using the Feynm
reparametrization technique defined by the equality

1

AB
5E

0

1 da

@a~A2B!1B#2
. ~A4!

Applying this trick to the first integral yields

I1[E ddp

~2p!d
1

~p21r 0!~@p1q#21r 0!

5E
0

1

daE ddp

~2p!d
1

$@p1aq#21r 01aq2~12a!%2
.

~A5!

The origin of thep integration can be shifted, since there
no cutoff involved, and the integration can be performed;
result is

I15
Kd

2
G~22e/2!G~e/2!r 0

2e/2

3E
0

1

da@11a~12a!q2/r 0#
2e/2. ~A6!
e

,
l
i-
e
-
d

e

n-

e

The constantKd is defined byKd[Sd /(2p)d, andSd is the
surface of a d-dimensional sphere given b
Sd[2pd/2/G(d/2). The analogous results for the other pro
uct integrals are

I2[E ddp

~2p!d
1

~L21p2!~L21@p1q#2!

5
Kd

2
G~22e/2!G~e/2!L2e

3E
0

1

da@11a~12a!q2/L2#2e/2, ~A7!

I3[E ddp

~2p!d
1

~L21p2!~@p1q#21r 0!

5
Kd

2
G~22e/2!G~e/2!

3E
0

1

da@ar 01~12a!L2

1a~12a!q2#2e/2, ~A8!

I4[E ddp

~2p!d
1

~p21r 0!~L21@p1q#2!

5
Kd

2
G~22e/2!G~e/2!

3E
0

1

da@aL21~12a!r 0

1a~12a!q2#2e/2. ~A9!

1. Expansion in terms of the momentum

To proceed, we expand the integrands ofI in powers of
q2, defining the closed-form binomial expansion

~11x!2e/2511
e

2(i51

`
~2x! i

i
Y~ i !, ~A10!

with the function

Y~ i ![)
j51

i21 S 11
e

2 j D511eY1~ i !1O~e2!. ~A11!

The integrals appearing inI1 andI2 can then be performed
for general powers ofq2 and are given by

1

nE0
1

da@a~12a!# i5
~ i ! !2

i ~2i11!!
[J~ i !. ~A12!

Rescaling the integrals byI5ĨKdG(22e/2)G(e/2)/2, one
obtains

Ĩ15r 0
2e/2F11

e

2(i51

` S 2q2

r 0
D iJ~ i !Y~ i !G , ~A13!
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Ĩ25L2eF11
e

2(i51

` S 2q2

L2 D iJ~ i !Y~ i !G
5L2eF11

e

2(i51

` S 2q2

r 0L
2D iO~r 0

i !G . ~A14!

A similar calculation for the integrals appearing inI3 and
I4 leads to the result

Ĩ31Ĩ45
2L2e

12e/2
1O~r 0!1(

i51

` S q2r 0 D
i

O~r 0!. ~A15!

Neglecting terms ofO(r 0) is consistent with the initial sim-
plification made for the bare propagator, Eq.~A2!. The pref-
actor of the integrals can be written as

G~22e/2!G~e/2!5
ep/2

sin~ep/2!

2~12e/2!

e
, ~A16!

where for later calculations we will use the expansion

ep/2

sin~ep/2!
511

e2p2

24
1O~e4!. ~A17!

Putting everything together, setting the cutoff toL51, the
integralV is given, to all orders inq2 ande, by

V~q,r 0!52Kd

ep/2

sin~ep/2! F12
12e/2

e
~r 0

2e/221!

2r 0
2e/2 ~12e/2!

2 (
i51

`

~21! iS q2r 0 D
i

J~ i !Y~ i !G .
~A18!

The result, to first order ine, as sufficient for the calculation
of the scaling function up to two loops, is given by
u

.

e
er
-

er
V~q,r 0!52KdF11
1

2
~12e/2!lnr 02

e

8
ln2r 0

2
1

2 S 12
e

2
2

e

2
lnr 0D

3(
i51

`

~21! iS q2r 0 D
i

J~ i !@11eY1~ i !#G ,
~A19!

with

Y1~ i !5(
j51

i21
1

2 j
. ~A20!

2. Result for vanishing mass

For the caser 050 the integralV can be written after a
calculation similar to the last section to all orders ine as

V~q,0!5Kd

ep/2

sin~ep/2! F12e/2

e
q2e

G~12e/2!2

G~22e!

2
11e/2

e
1O~q2!G , ~A21!

whereL51 has been set for simplicity. Using the expansi

G~12e/2!2

G~22e!
511e1~12p2/24!e21O~e3!, ~A22!

the value ofV(q,0) is given by

V~q,0!5
Kd

2
@e~12p2/12!2~21e!lnq1e ln2q#

1O~e2,q2!. ~A23!
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