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Critical behavior of energy-energy, strain-strain, higher-harmonics,
and similar correlation functions
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The structure factor associated with general biquadratic correlation functions is calculated for an
n-component order parameter usiegexpansion techniques id=4— e dimensions. The results apply to
energy-energy and strain-strain correlations as well as to correlations of higher harmonics in density wave
systems. We find the correlations of these secondary order parameters to be characterized by a correlation
length &= EO[(TfTC)/TC]’”, with the same rdependent exponent as for the correlation length character-
izing fluctuations of the primary order parameter, which is denoted. Bjhe amplitude ratic)A(z(Agolgo)2 is
universal, and we obtaiK;= y{/6y+ O(€°) for quadratic order parameters transforming like a traceless spin
tensor inn-component spacewith y; characterizing the divergence of the corresponding susceptikalitgt
Xe=al6y+O(€%) for energy-energy correlations, wheseand y denote the usual specific heat and suscep-
tibility critical exponents, respectively. The universal amplitude ratio for the second harmonic in density wave
systems is given byt with n=2 and takes the valu¥,= /20— €2/100+ O( ), thus being very small. This
naturally explains previously puzzling experimental results for the critical behavior of the second harmonic
structure factor at the nematic—smeddig-transition of a thermotropic liquid crystal. Applications to sound
attenuation in liquids or solids close to critical transitions and to colloidal interactions in near-critical binary
mixtures are briefly discusseff51063-651X%97)12802-1

PACS numbe(s): 05.70.Jk, 64.60.Fr, 61.30v, 75.40.Cx

I. INTRODUCTION The susceptibility is obtained from the correlation function at
zero momentung=0, and is asymptotically given by
The direct relation between the scattering inten&tq) B
near a critical point and the Fourier transform of the two- x(D=G(01)=xot 7. 4)

point correfation function The exponenty andv give the strength of divergence of the

ddx susceptibility x(t) and the correlation lengtl§(t), respec-
G(q)ocf ——amel X J)(O) ) (Z(X» (1)  tively, and are universal features of the physical system; they
(2) depend only on a few parameters such as dimensiorglity

i . ) and the number of componentsof the order parameter.
has made the correlation function of central interest both for Apart from a rather natural normalization bfx?), given

theorists and experimentalists. In Ed) the integration ex- by

tends over ad-dimensional system, withp denoting an

n-component vector field. . dfd)
The hypothesis of scaling asserts that, when the critical f(0)=1, dx?

temperature is approached, i.e., when-T., and qa<1l

(where a is the lattice spacing the two-point correlation the scaling functiorf (x?) is universal to the same degree as

=-1 ®)
x=0

function has the asymptotic forfii] the exponentf2]. The second normalization condition in Eq.
(5) means that(t) is identified as the second-moment cor-
G(q,t)=xot 7f(q%£?), (20 relation length defined through the second spatial moment of

_ _ _ o the correlation functiorfG(r)=($(0)- ¢(r)). It follows that
which defines the scaling functiof(x“); the reduced tem-  the structure factor can, at least for small values|af, be

peraturet is defined as written in the standard way as
t=(T-To)/T.. Xot™”
o G(a,t) =727 +0(q"). ()
. . : . 1+g%¢
The two-point correlation lengtté varies asymptotically
(which means in the limit—0) as The amplitudesyy and &y are nonuniversal parameters de-
pending explicitly on details of the interaction, lattice struc-
E(t)=¢&pat™". (3)  ture, etc.

In this paper we extend the analysis to biquadratic corre-
lation functions which describe the fluctuations of secondary,

*Present address: Service de Physiquéoiigee, CEA-Saclay, quadratic local order parameteggr). These secondary or-
91191 Gif-sur-Yvette, France. der parameters show critical behavior due to a coupling to
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v, contrary to what had been initially inferred from experi-
ments on second harmonic scattering in liquid crystal sys-
tems[4]. Ratios of quantities which diverge with identical
exponents commonly approach universal values in the
ee(r)=i(r)di(r). (7)  asymptotic limit[6]. The universal amplitude ratios of the
different correlation lengths are given by

the primary fluctuating field{&(r). Two distinct choices for
the symmetry ofp(r) emerge: the first choice is given by the
local energy density, which is defined by

The indices refer to the@ components of the fieIdZ; re-

peated indices are always summed over. One notes that 5\2 4—n ,(N+2)(13n+44) 3
¢e(r) is isotropic in then-component space. The second 2= ¢ :612(n+8) —€ 12(n+8)3 )
choice is an anisotropic secondary order paramggr
which can be written as N
— 3
pr(1)= (N by (1), ® 6y O (a0

with i#j. Experimental realizations of this order parameter T\ 2 d+n n2—181— 88
include quite generally anisotropic couplings in ordering sys- Xy= (_‘)) —e + €2 + +0(€d)
tems such as strains in certain crystase Sec. IIl A. &o 12(n+8) 12(n+8)

As will be shown in detail in Sec. Ill B, the fielg; for
the special case=2 corresponds to the second harmonic Y1 3
order parameter in density wave systems. The correlations of = @ +0(€%). 1D

fluctuations in this secondary order parameter have recently

been determined experimentally for a liquid crystal at thegne important feature of these universal ratios is that the first
nematic—smectiéx transition using high-resolution x-ray taym in these series is already of ordereading to a loga-
scattering techniquefg]. There it was found that the corre- rithmic divergence ag—0. Experimentally relevant is the

lation length associated with fluctuations in the second harj,genendent observation that the combinatorial prefactors in
monic order parameter scaled rather differently from the COlEgs,(10) and(11) are quite small.

relation length associated with the first harmonic, which is '\, sec. 11 we first reproduce the critical behavior for zero

the primary order parameter. Fitting the data to a single,,nentym: then we present oarexpansion results for the
Lorentzian, the two exponents for the divergence of the cor-

relation length differed markedly, and hyperscaling was se_§ce}llng functionf (x°) for sma!l momentu.nxfl apd in the
verely violated for the second harmonic. Some of the result§mit x—. Based on the series expansmnf(:zkz) in terms
described in the present paper were reported previously, t@f x2, we give a closed-form approximant fé¢x?) which
gether with a detailed comparison with additional measureinterpolates between and reproduces these two limits. We
ments, leading to an interesting reinterpretation of these exadd a discussion of corrections to scaling and the limit
perimental results in accord with scaling thepsy. In all of  e—0. The latter limit corresponds to the dimensionality

what follows, a symbol with a hat stands for the two versionsd— 4 for normal short-ranged interactions, but also includes

corresponding to the choices= ¢ and = @1, which are, the experimentally relevant dimensionaliy-3 for dipolar

only if necessary, distinguished by an indéor T, respec- interactiong 7]. Section Il contains the application of these

tively. results to density wave systems, strain-strain correlation
To summarize our results, the two-point correlation func-functions, and colloidal interactions in near-critical binary

tion of the secondary order parametéran be written in mixtures, followed by a discussion and a brief outlook.
the same form as Ed2), namely,
II. BIQUADRATIC CORRELATION FUNCTIONS

A Dt YF (232
G(a.t)=xot 71(a°¢%), ©) A. Scaling at zero momentum

and constitutes a subclass of biquadratic correlation func- The behavior of they=0 part of the structure factor of
tions obtained from the general four-point correlation funC-secondary order parameters can be understood in terms of a
tion by a pairwise contraction of field coordinates. It is as-simple scaling model for the free energy[8],
sumed that the identical normalization conditidd$ apply
to the biquadratic scaling functioh(x?), which naturally F(t,hp)~[t/> “w(h/]t|®7), (12)
defines the biquadratic correlation lengthThe critical be-
havior at zero momentunx& 0) is well known; the expo-
nentsyg= « and ¢ are different from the susceptibility ex-
ponent y for the primary order parametey, and are
determined by the respective crossover exponents, see S
A,

Interesting information is obtained about the critical be- , 5 o i
havior at finite momentum, which can be inferred from the (¢T)c=0°Floh~|t| T, (13
scaling functiong ¢(x?) andf(x?) for x>0. Specifically, it
is found that the correlation lengths of all biquadratic andwhere the subscriptC denotes the cumulant and
bilinear correlation functions scale with the same exponentyr=a—2+2®;. Using the resulf9]

where ®;=vy; is the crossover exponent associated with
the generating fieldh;, which couples linearly ta+; like-
wise, the energy operatasg couples to the temperatute
gﬁe scaling functionw(x) satisfiesw(0)=1. From the
above ansatz one immediately obtains
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(@ b) (©) . [Ng=1+n/2,
= (19
NT: 1,
- “IMy=n(n-1), (20
FIG. 1. Graphs that have to be evaluated at finite external mo-
mentumq and finite bare mass,. The graph in(a) is defined by () denotes the subgraph defined by
Q(q,ro), the graph in(b) is then given by (q,r,)?, and the graph
in (c) is canceled by mass renormalization. 1 o o
Qa.r0)= 7 fG< '(p+a)G(p). (2D
L2 Lnimess o ’
yreemergte 2(n+8)° TOE), (A4 Lith the bare propagatds(®) given by
one obtains for the exponent; the value[8,4] (0)/ ) —
G™(a) Prrot A 2" (22

_n+4 2(n—2)(n+4)(n+l4)
YT Mm+s8) " € 4(n+8)°

+0(€%. (15 The integrals corresponding to the first and second terms in
Eq. (18) which are proportional t6) andQ? are graphically
represented in Figs.(d) and Xb), respectively. The graph in
I'éig. 1(c) is canceled by appropriate mass renormalization,
i.e., by replacing the bare parametgrby its renormalized
value, the true susceptibility=1/y~t” [10]. Note that at
this level of perturbation theory, no such renormalization
B. Scaling at small finite momentum takes place for the four-point coupling strength

The Hamiltonian appropriate for the study of the critical ~USing the result fo) derived in the Appendix, Sec. 1,
scattering of higher-order vector correlation functions can and expanding in powers @ the correlation functior{18)

The analogous calculation for the energy-energy correlation
trivially yields yg= «. One notes thay; as well ase are of
leading ordete.

be written in standard form g4.0] can be written as
1 : G(a.r) . 2w , @
_ + 2 204y 4 o _A_ At o U B
HIT fq{ 5o+ A"+ A"qY) ¢i(q) di(—a) T C—lnr + ——Inr— =-[1-Zz(u)lnr]
u ’ n + 2, 2, , 4 ,
+—dH f $i(@) (@) bi(a") Oe” ' euq) 23
(2m)%Jala)a _
with
X¢i(—9-q'—0q"), (16) X
. . u
with the shorthand notatiofy,= [ dq, and withA represent- xo=[1-2(W]| 1+ = 5] (24)

ing a smooth cutoff11]. In the resulting equations we set
A =1 (the universal results do not depend &i. The two- 44 65_2/[1_2@)]' In the above equationy* denotes
point correlation functions of the quadratic local fields de-,, fixed-point value ofi, and is given by10]

fined in Sec. | are then given by
2

- e e € o= o). (25
G(a.ro)=(¢(a)e(—a)) U= Ik e €)= g TO(). (29
:(Z—ir)dfpfp/wi(p) bi(q—p) (") The functionz(u) reads
’ ~ u 2 N
X ¢i(—=9—p"))c, (17 Z(U)Eu_*g_ni_S' (26)

with i = for correlations of the energylike local fielgl: or ) - . .
i #j for the traceless local fieldr. Expanding up to first For the Ca'C“"’?‘“OU of crltl_cal exponents anq gmplltude ratios,
order in the four-point vertew (which is a two-loop expan- °N€ fixesu at its fixed point valuar*; the critical exponent

sion; see Fig. JI, one obtains the following expression for the ¥ can be obtained from Ed23) by the usual method of

correlation function: exponentiating logarithms according to the expansion
G rYY=1— (216~ 2,€?)Inr + 1 2An?r + O(€%), (27)
,\7,' =20(q,r)—16uNQ(q,r)?, (18)

and is given in terms of the functiar(u) by

with the combinatorial factor8l andM given by Yl y=2(u*)=27,6—2,€°+ O(€%). (28)
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Note that, sincez(u) is only known to ordere from our L2y .
two-loop expansion, we cannot obtam. But, as will be XEEZG_JFO(G ) (38)

shown below, we can in fact calculate critical amplitude ra-

tios up tOO(EZ). For these calculations we need the Valueﬁn the asymptotic limit. Using the values fé'i and 22 one
of z, as well, which are taken from the literature. With the obtains the universal amplitude ratios given in Ed€) and
well-known values for the susceptibility and heat-capacity(11). For negative values of/y (as, e.g., observed for

exponentg 10] energy-energy correlation far=2) one therefore obtains a
n+2 2(n+2)(n2+22n+52) , nega’;iv_e value for the amplitude ratia T_his aF firs'g glance
’y=1+€2 8 +e€ 7 g3 +0(€e), surprising result can be understood since in this case the
(n+8) (n+8) 29 singular contribution to the biquadratic susceptibility itself is
negative, leading to a cusplike finite maximum at the critical
4—n ,(n+ 2)%(n+28) . point. A negativeX then corresponds to an attenuation of the
Y=€3n¥8) € An+8] +0(€°), (300  singular contribution for increasing valuesafas expected.

and y; given by Eq.(15), one obtains the explicit values

g 4-n 31
A732n+8) 39

¢ (n+2)(13n+44)
2= 3n+ed 32

. 4+n

21=5(n+8)’ (33

; 88+181—n?
= (34)

2= 3(n+8)7°

C. Scaling at the critical point

Right at the critical point, defined loy=0, the biquadratic
correlation function scales asymptotically like
G(qr=0)~q"2, (39
defining the exponeny, which can be expressed in terms of
the other exponents via the scaling relation
.Y
2— n= ; (40)
From the definition of the correlation functidd8) and the
explicit expression for()(qg,0), derived in the Appendix,

With these notations the biquadratic correlation function atS€c. 2, one obtains

the fixed-point coupling strength* can be written as

. ry
—e- 1
y v

9(g?/r)+0(€?), (39

with the scaling functiorg(x?) for small arguments®<1
given by

@(x2)=1—6%x2+0(e3,x4). (36)

Comparison with the definition of the scaling function

f(x?), Eq.(9), and using the second normalization condition

in Eq. (5), one immediately identifieb( yx%/6y) =g(x?) and
thus

Y

%2=6—yr_1+0(e3). (37

Noting that, for the Hamiltonian given by E@16), the bi-

linear correlation lengthé can be calculated to be
é=r~ Y24+ O(€?), we obtain our two main results from Eq.
(37): (i) the bilinear correlation length and the biquadratic

correlation lengthgg and 1 scale with the same exponent
v to leading order irg, in agreement with the general scaling

hypothesis, stating that there is a single length scale in the

asymptotic limit; and(ii) the ratio between the two correla-

tion lengths, defined b§(EEZ/§2, approaches the universal
value

G(q,r=0)

=(1+€/2)
MKy (

’7T2 ~
e( 1_E) -2 Inq(1—2z(u)Inq)

+O(U2,62,U6), (42)

with z(u) given by Eq.(26). From the above expansion one
readily obtains 2 7=27(u*)+O0(€?); using y/v=2
+0(€?) and Eq.(28), one confirms the scaling relati¢a0)
to ordere. Using the knowledge abogtto ordere?, and the

scaling relation40), the exponents; are explicitly given by

L, AN 2Em@siy
Me=2T€g e (n+8)°3 +O(e), (42
_ 4+n 288+18n—n2 o 23
nT= _En+8+€ (n+8)3 + (6 ) ( )

These exponents are quite large, unlike the resultfdor

the bilinear correlation function, and higher-order corrections
to the expansion of the scaling functi@r(lxz) for small ar-
guments are expected to be important. Using the definition of
the scaling functiog(x?), Eq. (35), the functional behavior
for large argumentg>1 can be calculated to be
G(x3) = (1+25/y)x7 2+ 0(€?). (44)
A heuristic expression fof:;(xz), valid for both small and
large arguments, will be presented in Sec. Il F.
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D. Corrections to scaling ~ 2
. . . . . Yeft _€Ua _
In this section we discuss corrections to scaling due to the Ef = '
crossover from mean-field behavior, at high temperatures, to
the asymptotic critical behavior below the Ginzburg tem-Using this relation, which holds beyond the asymptotic re-

perature. This crossover can be calculated explicitly withingime since it includes corrections to scaling, one finally ob-

u -1
1+u—*(rf’2—1)} . (51)

the e expansion. tains for the scaling function the result
Generalizing the analysis of the scaling corrections for the
specific heat by Rudnick and Nels¢h2], we write the bi- R Yerr 02 Yeft -
quadratic correlation functio® at zero momentum and the Fq,r)=1— —=1-—¢&40" (52

. - 6%err T 6 Ve
inverse susceptibility as

and, for the universal amplitude ratio,

u 221 A
1+u—*(tf’2—1)} —1] o e
ef 6 Verr’

o M1
CU=3a=mu

+O(u2,eu,ez), (45

(53

which is a generalization of the asymptotic res@8). The
~(n+2)/(n+8) ) ) above relation has recently been checked using cluster
+0(u?,eu, ), Monte Carlo simulation techniques for energy-energy corre-
(46) lations in two- and three-dimensional Ising models, and
agrees well with the numerical resultsg].
wheret is the nonlinear scaling field associated with the
temperature. These functions can be derived from approxi- E. Behavior for e—0
mate solutions of the differential recursion relatiph8—15. .
Combining these expressions, the biquadratic correlation Since the amplitude ratios calculated in Sec. Il B are of
function for finite momentum can be expressed to the samieading ordet, it is important and interesting to examine the

u 12
rO)=t| 1+ (17?1

order of accuracy and including only terms upgfoas limiting behavior fore— 0. This corresponds to the limiting
behavior, obtained for normal short-ranged interactions for
&qr) u* u 2z the (unphysical dimensionalityd=4. However, it is impor-
LA { 1+ —(r=?— 1)} 1} tant to note that this upper critical dimension is reduced for
MKy  euz; u long-ranged interactions, and is realized at (jhleysica) di-
, 23,1 mensionalityd= 3 for dipolar interaction$7].
a“ u To obtain the correct behavior fer—0 from the expres-
LA el Gy . (4D sions(48) and(49), it is importantnot to setu=u*, since the

coupling strengthu becomes marginally relevant as-0,
with z; andu* defined in Sec. Il B. For the following, it is !€ading to logarithmic correction terms. In the limit-0,
useful to separate the regular part of the first term, leading t§XPression(48) for the biquadratic correlation function re-

duces to
G(q,r) u* u 22, u* .
——=——|1+—(r ?-1)| Fq,r)- —, G(q,r) S A
MKy euml w Y] Aen=oe e [1-2uKy(n+ B)Inr 2.,
MKd 4U21Kd(n+8)
(48)
(54)
with the scaling function?—'(q,r) defined by with
2 5 -1 ~
5 IR s U e A 9z
Harn=1-g w1+ =D . (49 Far=1+ 31— (55)

Fixing the four-point coupling strength at its fixed-point To obtain the limiting behavior as a function of the tempera-

value, u=u*, one reproduces the results from Sec. Il B totyurelike scaling fieldt, one first has to evaluate E¢6) in
O(e). In contrast, corrections to scaling arise from the slowthe limit e—0 andt— 0, which yields
crossover connected with deviations of the four-point cou-

pling strengthu from its fixed-point value. Defining the ef- u ~(n+2)/(n+8)
fective biquadratic susceptibility exponept; as =t = 5= Int (56)
R d IN[G(q=0(1))/ MK 4] Inserting this into Eq(54) and (55), one finally obtains

Yeft= — (50

d Int ' A
G(q.t)

one obtains(using as a definition for the effective normal |\7|Kd 4UE1Kd(n+8)
susceptibility exponent the expressiggg=4 Inr/dInt) the

result +0O(In Int), (57

[1-2uKy(n+8)Int]21H q,t)
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with TABLE I. Values of the first numerical coefficients appearing in
the scaling function.
)
- a7z, _
Fq,t) =1~ = [2uKq(n+8)] "2/ )(—Int) =02 2(i) Y,4(i) e (i)
1
_|nt)—6/n+8) i=1 % 0 0
+0 (=Int In Int _ (58) =2 & 1/2 1/36
t Int i=3 i 304 1/180
. 1
Recalling the well-known result for the quadratic correlation' =4 2520 11/12 4112520
length £ in the limit e—~0 andt—0 [17],
(_Int)(n+2)/(n+8) . * ) . R R
§2~f7 (59 g x)=1-2 (—x®)'E(i)|e2,— €2, + €7,
=1
and identifying from Eq.(58) the biquadratic correlation o 6d
lentifying a-(58) g x Ylm—#) +0(). (64)

length ¢ to be given by 4E(i)

., Zi(—Int)6n+E In contrast to the analogous results for the scaling function of

E— (600 bpilinear correlationg2], here the higher-order terng x2)

are of the same leading orderéras the term proportional to
for the ratio of the quartic and quadratic correlation lengthsx?, namely,O(e). It turns out that the Fisher-Burford ap-

in the limit e—0 one finally obtains the result proximant[1], which has been successfully used to approxi-
mate the quadratic scaling functi¢8], does not reproduce

g 7 the epsilon expansion of the quartic scaling function. For a

?N Zint (61) lucid discussion of different phenomenological scaling func-

tion approximants, seg20]. In the following, we present a
heuristic approximant for the scaling function which is valid

The universal amplitude rati¥, which was found to be pro-
both for small and large arguments,

portional to e, is replaced by a logarithmic singularity as

e—0. .
. L. . . 2 4 6 8 /2
As already mentioned, the limié— O is realized for cer- a;x“tax'tag’tait .-\ ”
tain dipolar Ising ferromagne{48,19. Measurements of the ~ apg o2y _ 1+ax%+agx*+ax8+ - - -
biquadratic correlation lengtéi could in principle be pos- g°Rx) = 1+ (X+a, 7/2)x2 ’

sible using sound-adsorption techniqusse Sec. ), which (65)
would allow a direct check of Eq59)—(61).
which reduces to the Fisher-Burford approximantjf=0
F. Higher-order terms in g2 fori>1. Forx<1, one has

Using the expression fd& in Eq. (18) and the result for
Q including higher powers ofj?> (Appendix, Sec.), the
biguadratic correlation function can be written as

g%PAX?) = 1— Xx2+O(x%), (66)

which, by construction, agrees with the asymptotic forms
G(q,r) 1 Y (36) and(38), and forx>1 (and if a;#0 for at least one

—— —=C—Inr+ s ezyIn%r+ 2, (—) with i>1), one obtains

MKdXO 2 i=1 r

n—2

x| [1— ezylnr+ €Y ()2 (i) gPAx?) = (67)

X+a;pi2

+0(e?). (62 Clearly, the amplitude of(x?) for_x>_1 fixes the coefficient
a,;. With the result(44), one readily finds

_2(1_221)(0\(10)

The constantg, andC were previously defined in Sec. Il B; 7
the numerical facto® (i) is defined by y=1-zez+ O(€?). (68)
o 2 0
( > (—x)'E( )) =D (=x)'0(). (63  Each term in Eq(64) of the order &?)' determines a param-
i= =1 etera;; going up tox® one obtains for the coefficients the

. e values a,=3/10+0(€), az=-—199/4900-0O(e), and
The first four values of the constant, (i), E(i), and 5 _5699/147 008 O(e), which reproduces the series in
@_(') are g|ven |n. Table 1. '.I'he' inverse scaling Iq?cnon Eq. (64) up to ordere. In order to reproduce the higher terms
9 (g?/r) is obtained by dividing Eq.(62) by r~""  including O(€?), one would have to knova, to O(e?),
(v/y), as was done in Sec. Il B, leading to which requires a three-loop calculation.
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Ill. EXPERIMENTAL APPLICATIONS Col®,q) Zde eiw'{<eaﬁ(0,q)eaﬂ(ﬁ —q)) [25], with T de-

In the following we discuss some experimental systemdoting time. Based on the simple Hamiltoniér0) we dis-
where the biquadratic structure factor and the correspondinginguish two contributions to the frequency-dependent strain-
correlation length can or have been determined experimerstrain correlation function:(i) a temperature-independent
tally. We distinguish three different mechanisms that allowbackground at zero frequency and zero wave vector, propor-
correlations of quadratitsecondary order parameters to be tional to the inverse elastic modulus tenaorand(ii) singu-
measured. lar contributionsC{(w,q) andC{(w,q), which arise for

(i) Local strains in a system close to a phase transitiomonvanishing constanis® and b(™, respectively, and are
usually couple to the order parameter. Due to symmetry readue to coupling of the elastic strain to the order parameter.
sons, the lowest-order coupling is linear in the strain andrhe first is the isotropic coupling, and is present in liquids
quadratic in the order parameter. Measurements of strairend solids alike, the latter anisotropic coupling is only
strain correlation functions, for example via sound attenuapresent in solids and depends on the detailed lattice structure.
tion experiments, include contributions proportional to bi-These frequency-dependent correlation functi@ff’ and
quadratic correlation functions and thus allow comparisonc(h are related to the equal-time structure fac®Bggq) and

with our results. This will be the subject of Sec. Il A. G+(q), which were defined and calculated in Sec. Il, simply
(ii) Colloids in near-critical binary mixtures act as local py the Fourier transform

field and temperature perturbations, leading to mutual inter-

actions that are proportional to bilinear and biquadratic cor- A o -

relation functions, respectivelj21]. Under suitable condi- G(Q)”f_wdw Celw,q), (72)
tions, the field perturbation can be suppresg4], and the

resultant interaction, proportional to the energy-energy coryhere the caret stands for the subscriptsr E, as in Sec. Il.

relation function, could be detected by light scattering ex- |n analyzing experimental results, such an integral might
periments. Comparison of the resultant decay ledgtivith  pe hard to perform in practice. Alternatively, one can use the
the correlation length of the binary mixturg, would then  dynamic scaling hypothesis, which predicts the frequency-

allow a determination of the universal amplitude ratio dependent correlation functions to have the Sca"ng m
Xe=(ée/&)%~al(6y) (with the exponentsy and y taking

values according to the Ising universality class of the binary (A:e,(w,q)~t*”*:/\?(qzéz,wr). (72
demixing critical point.

(iii) Higher harmonics in density-wave systems areHere z denotes the dynamic exponent. So in principle the
coupled to the first-harmonic order parameter. At the criticakorrelation lengthste and & might directly be calculated
point, characterized by the singular behavior of the firstfrom C(w,q) by fitting data at constant scaling variable
harmonic order parameter, the higher-harmonic structure faGw 7, wherer~t~2 is the relaxation time, which diverges on
tors contain contributions which are proportional to higher-approaching the critical point.
order correlation functions of the first-harmonic order The energy-energy correlation function can thus be mea-
parameter. Our results for the biquadratic structure factosured via sound attenuation in liquids close to a binary de-
correspond to the singular part of the second-harmonic strugnixing or liquid-gas critical point; experimental realizations

ture factor, as will be explained in Sec. Il B. for the latter include ultrasonic attenuation in xenon near its
critical point[27]. One notes that in order to determine the
A. Coupling to elastic degrees of freedom universal amplitude ratio between the two correlation

Elastic deformations of liquids or solids are defined by thelengths, one has to determine the ordinary correlation length

. S ) independently with some light-scattering experiment.
stralr_l tensog, s, which is related to the displacement vector Sound attenuation in crystals allows to access the tenso-
u(r) in the usual way by

rial structure factor as well24]. The most prominent ex-
1{du, dug amples are structural phase transitions in perovskites, where
eaﬁzz< —) (69) measurements of longitudinal and transverse modes along

different lattice directions allow independent determinations
of the structure factor&(q) andG(q) [28,29.

g I,

The order parametea?(r), governed by the Hamiltonian
(16), in general couples to these deformations. In the long-
wavelength limit, the bare elastic Hamiltonian including the
coupling terms can be written §23,24 The order parameter of density wavéBW’s) in a
uniaxial system is characterized by the complex amplitude
1 - 1=y +iyy, determined by the contribution Rg{e'90?)
HalT= fl?‘uﬁyﬁeaﬁeyﬁ b'® b1 $i€aat bijasd ¢iedﬁ]' to the density modulation, which runs parallel to thaxis.
(700 The wave vecton is determined by the wavelength of the
modulation. Since the order parameter has two indepen-
Note that the bare coupling constants are only weakly temdent components, the critical behavior associated with a con-
perature dependent. In a typical sound adsorption expertinuous symmetry breaking of the thermal average/efis
ment, one measures the frequency-dependent attenuation aescribed by theXY-model universality class. Examples in
efficient, which is, via the fluctuation-dissipation theorem,solids include charge density wave systems such as NbSe
directly related to the generalized elastic correlation functior30], spin density wave systems such as[B1], and rare-

B. Density wave systems
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earth magnets. Two-dimensional freezing from a hexatic To proceed, we define the “local™th harmonic order
fluid to a solid is another examp[82]. In three-dimensional parameters as the slowly varying complex functiahg(r)
complex fluids, such behavior is provided by the smeatic- determining the density:

phase of thermotropic liquid crystdl33]. The nematic phase

of these rodlike liquid crystal molecules shows orientational
order, but is positionally disordered. The nematic—smectic-
A phase transition corresponds to the establishment of a one-
dimensional mass density wave in the three-dimensiondhn the most general case, one should treat all #h¢s as
fluid with the mass density wave along the direction of ori-competing order parameters. In the absence of couplings,
entational order. The smectic phase and the critical fluctua€achy¥m would undergo a separak€Y-like phase transition,
tions associated with the onset of smectic ordering can bat @ temperatur&,,, described by the Hamiltonian
represented in terms of the above defined order parameter 1

¥ [34]. High-resolution x-ray scattering and ac-calorimetry #{,,= ddr( Erm0[|’/’m|2+ &bt V¥l + €5 1l VL ¢l %]
experiments have indeed shown that many features of the

[’

p<r>=po+RemE=1wm<r>exmqomz>. (73

nematic—smectiéx phase transition in liquid crystals are

well described by the three-dimension@Y model, although + U ¢m|4]- (74
the correlation lengths exhibit weakly anisotropic scaling

[35]. The distinct prefactorsif,,, and &7, of the parallel and

Recently, there has been considerable interest in the critherpendicular gradient terms take into account the experi-

cal behavior of higher harmonics, associated with the contrimental fact of anisotropic correlation lengths. We must also
butions Re(,e'™%*) to the density modulation. Theoreti- take into account the coupling terrfs]

cally, the exponents describing correlation functions of the
order parameterg,, were derived from thX'Y model which
describes the leading order paramefgr 8], and the results
were nicely confirmed by measurements of the bond orien-
tational order harmonics in hexatic liquid crystaBs]. The correlation functions of the secondary order parameters,
More recently, experiments on the nematic—sme&tic- ¥m'S With m>1, can in principle be derived from Eq§4)
(N=Sm-A,) transition in the polar thermotropic liquid crys- and(75).
tal material 4-n-heptyloxycarbonylphenyl-4(4”-cyan- AssumingT, to be far enough beloW,, one has a single
obenzoyloxy benzoate(7APCBB) succeeded in observing Phase transition af.=T;, with the leading two component
the critical fluctuations associated with the second harmoni@rder parameteg;. Near this transition, we can neglect the
of the DW order parametdn]. Although these experiments Self-interaction of the/,,'s, and seu,=0 in Eq.(74). Thus
confirmed the theoretical predictions for the secondihe #n's for m>1 can be treated in the harmonic approxi-
harmonic susceptibility, fits of the second-harmonic struc- mation, and we can solve the partition function i@y, ex-
ture factorS,(q) to a single Lorentzian shape yielded corre-actly in terms of the correlation functions af,. For ex-
lation lengths &), and & ,, which seemed to scale very ampJe, the average density modulation with the wave vector
differently than their first-harmonic counterparts. Very closemq,z is determined by
to the transition, the former were at least an order of magni-

Hm,int::umf ddr(lprlnw:n"' ‘ﬁi m‘ﬂm)- (75

tude smaller than the latter at the same temperatures. At- Vo= {(m) = LmXm{ 1), (76)
tempts to modify the Lorentzian shape failed to change these
conclusions. where xmp,=1/r 1o is the bare susceptibility for theth har-

These results were very surprising: a different scaling ofmonic. Sincexyy is not singular aff;, the singularity comes
the correlation lengthst,'s for the different harmonics only from (yf)e|t|fm where t=(T—T)/T;, Bm=2
would imply that theN—SmA, transition involves more —a— ¢, and ¢y, is the crossover exponent associated with
than one critical length scale, and that it cannot be simplynth order anisotropy near the rotationally invariaXty
described by theXY model. Furthermore, the fitted expo- model fixed poin{8]. Specifically,¢, is the crossover expo-
nentsy, andv, , severely violated the hyperscaling relation nent for a uniaxial anisotropy term, proportional to
2v, 5+ v;=2—a, with no explanation. The results pre- Re(?)=(#3)?—(y})? or to Im(y7)=2¢5¢ =2¢1. In-
sented in this paper clarify the critical behavior of higherdeed, the experiments on bond orientational harmonics con-
harmonics in DW and similar systems. Specifically, all thefirmed these predictions36].
harmonics are still dominated by the critical behavior of the The above theory can now be extended to the structure
XY model, and¢?,=Xé2 whereX,, is a universal number; factor[37,3§
in particular, Xo,=X; with n=2, which was calculated in ~
Sec. II. SinceX,, may be quite small, the structure factor of  Sm() = {¥m( @) ¥(0)) = Siup(A) + 15 Smp(AD) *Si( ),
the mth harmonicS,(q) may be strongly influenced by its (77
bare (noncritica) value. Furthermore, since at the transition . .

Sn~q7m 2, with large values ofy,,, deviations from the whereyi(0) is the Fourier transform ofy,(r) and

Lorentzian shape are also important. These theoretical results

have been used to reinterpret the experimental results of Ref. Sp(Q) = s
[4], together with some measuremeffi$ 1+ &jmpd] + &7 medt

KeTXmb

(78
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is the baremth harmonic structure factor. Here Determining the parameters occurringSgy,(q) from fits far
_ from the nematic—smecti& transition, and using these val-
Sm(@)=(¥T(a)¥1 "(a)) (79 ues for all temperatures, the parameters occurring,{i)

had been set to the following valueg, at 2— vy,/v~1.5
has to be calculated with th¥Y model HamiltonianH;  and &1 and £, at their values determined froiBy(q) at
[39,40. Asymptotically close toT, and for very smalld,  each temperatureX, was set at itse-expansion value of
Smp(0) is practically temperature independent, and the diver9,.04, as given by Eq11) and usingn=2. Using the Fisher-
gent part ofS,, is proportional toS,,, which we calculate Burford approximant80) in Eq. (77), the structure factor
next. However, the experimental data usually extend over &, was fitted for 10°<t<10 4, close toT,, and good fits
range of momentg in which theq dependence d§,,, can-  were obtained form;~0.01. Settinga, at this value for all
not be ignored5]. This fact may be associated with the temperatures, one was left with a single temperature-
physical nature of the polar material, where the sme&tic- dependent parametgi3y,; the resultant fits to both the
phase may be close to the transition into the smekfic- transverse and longitudinal scans over the complete tempera-
phase. _ ture range front~10 2 to t~10 ° were very good5].

We next discuss the correlation functi@®),(q). Apart As noted already in Sec. Il F, the Fisher-Burford approx-
from a trivial phase shift, which interchanges the real andmant gives a good description of data but is not consistent
imaginary parts, we have seen that the local field zﬁga( with a systematic expansion in powerseofHowever, setting
corresponds to the tensorial operatey with n=2, which  e=1, one can obtain the value @; from our epsilon-
was introduced and defined in Sec. I. Consequently, thexpansion results by matching the general expresén
structure factoiS,(q) is proportional to the biquadratic cor- With & =0 fori>1 to the asymptotic result valid in the limit
relation functionG(q) with n=2, which has been calcu- X*>1, Eq.(44); this yields the estimata;=0.07, which is
lated in Sec. II. The higher harmonice1t-2) correspond to ~ considerably larger than the experimentally determined
operators which are of higher order in the primary figid ~ value. Clearly, a fit of the experimental data using the ex-
which have not been considered in this paper. tended scaling functiof65) would be desirable.

In analogy to the results for biquadratic correlation func-
tions of Sec. Il, one expects the scattering functions for all
harmonics to be dominated by the critical behavior of the IV. DISCUSSION
XY model represented iy,; therefore they should have the
asymptotic scaling form Sy(Q) = xmIm(a%£2), Wwhere
Xm~|t| ", with — y,=2—a—24¢,[4,8], andg,, is a uni-
versal scaling functiorf6]. For x<1, g,(x?) may be ex-
panded in powers ok? and thus be approximated by a

The momentum-dependent scaling behavior of biqua-
dratic correlation functions has been determined. Depending
on the symmetry of the quadratic fields in thecomponent
space, one either describes energy-energy correlations or cor-
. i ) A f relations of a local operator which transforms like a traceless
Lorentzian, that isgm(x)=1[1+Xmx"+O(x)], and X tensor in the component space. The latter correlation func-
is a universal amplitude ratio [S]. Rewriting {5 describes strain-strain correlations in certain anisotropic
Sm(Q)=xm/[1+&ra?+---], this vyields &=Xnél  solids and, for the special case=2, describes the fluctua-
=Xméldt| 7?*; that is, all the harmonic correlation lengths tions of the second-order harmonic in density-wave systems.
scale with thesameXY model correlation length exponent We show that the exponent, which measures the diver-

v, but with different amplitudesThe ratios of these ampli- gence of the correlation length, is the same for the biqua-
tudes, X, are universal. Indeed, owr-expansion calcula- dratic and the regular quadratic correlation function, which
tions in Sec. Il confirm these expectations for the caséndicates the existence of a single diverging length scale. The
m=2. In addition, these expansions show tgf can be ratios between the quadratic and biquadratic correlation
small compared to unity, causing thedependence d6,,to  lengths are universal and proportionaletoalso, the numeri-
become dominant only very close td.. For x>1, cal prefactors of these ratios are quite small.
Om(X?) ~x~ G ) with 2— 5= ym/v. For m>1, 7, is This theory is completely consistent with the experimen-
quite large, and we expect significant deviations from thelal data on the second harmonic critical fluctuations in
Lorentzian shape at large To approximate the crossover 7APCBB, including thee-expansion estimate foX,, as has
between these limits, one can use the approximanpeen shown in detail in Reff5]. It would be most valuable to
g?P(x2), given in Eq.(65). search for similar effects in other systems wil-like DW

Considering the isotropic casé|fp= ¢, mp), the results or(_jermg. Also, th_e critical behavior of energy-energy corre-
derived in Sec. Il can be directly applied. For the experimen/ations or correlations of other secondary order parameters in
tally relevant case of anisotropic correlation lengtigg,,  SYStems showing continuous phase transitions would provide
#£ ), one can still use our results by making the remace}r)n;p)r;m&ght into the interesting phenomena discussed in this
ment £2q°%= £5,05+ ¢2,0° . In Ref. [5] experimental data : - . .
were fi%ted ulilngj thélFilsher-Burford expression, which fol- Some preliminary Monte Carlo simulations of two- and

: : _ three-dimensional Ising systems exhibit good agreement
lows from our extended approximaf®5) by settinga;=0 ) ) .
for i>1: the resulting expression reads with the nonasymptotic amplitude-exponent relat{68) for

energy-energy correlatiori6]. Extensions of these numeri-

cal results into the asymptotic regime and for vector order

= s—>—>———. (80 Pparameters would be useful to check our results, and could
1+ (Xotagm2/2)(&§,0j+&7107) provide an independent access to the experimentally relevant

~ keTx2[1+ay(&faf+ &2 ,a7)]722
5,(q) BT xal 1(&j20) + £1107)]
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numerical values of the universal amplitude ratios in threeThe constank 4 is defined byK,=S,/(2m)9, andS; is the

dimensions. surface

of a d-dimensional sphere given by

Sq=27Y/T'(d/2). The analogous results for the other prod-
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APPENDIX: EVALUATION OF THE INTEGRALS

In this section we determine the integfal defined by

1
Q(g,rg)= Wfpd‘”(w ) G9%p). (A1

It is convenient to introduce a smooth cutoff and define the
bare propagator d4.1]

GO ! ! ! +0
(P = 7 A 2% rgrp? AZtpz O
(A2)
Thus, the integraf) can toO(r8) be written as
f 1
Q(q,ro)= (2m) | p? ‘Ho A2+p2
1
8 [p+q12+ro TN [p+qP
EIl+IZ_I3_I4. (AS)

The four product integrals can be solved using the Feynman-
reparametrization technique defined by the equality

uct integrals are

dp 1

%= | @m? AT (AT [p )

Kq )
:?F(Z—E/Z)F(E/Z)A €
1
Xf da[1+a(1—a)g?/A?] < (A7)
0

d 1
(2m® (A+p?)([p+al°+ry)

135
Kd
= 7F(2— el2)I'(el2)

1
X f dafarg+(1—a)A?
0
+a(1-a)g?]” (A8)

dp 1
(2m)9 (p*+r1o)(A%+[p+q]?)

I4E
K
= 71_‘(2— el2)I'(el2)

1
X j daf[aA?+(1-a)r,
0
+a(l1-a)g?]” 2 (A9)

1. Expansion in terms of the momentum

To proceed, we expand the integrandsZah powers of

g2, defining the closed-form binomial expansion

1 B 1 da
E_jo[a(A—B)+B]2' (Ad)

Applying this trick to the first integral yields
d 1
(2m)% (p*+ro)([p+al*+T1o)

1
f fzw)d{[p+aq]2+ro+aq2(l a)}®’

I,=

i—1
Y(i)=]]
j=1

(1+x)*f’2=1+§2 _i—X)Y(i), (A10)
i=1

with the function

=1+€eY,(i)+0(€?). (All)

l+€
2j

The integrals appearing iy, andZ, can then be performed
(A5)  for general powers o> and are given by

The origin of thep integration can be shifted, since there is
no cutoff involved, and the integration can be performed; the
result is

11 L
ﬁfo dafa(l—a)] =m=:‘(l). (A12)

Rescaling the integrals by=§KdF(2—e/2)F(e/2)/2, one

=—F(2—6/2)F(e/2) 5 2 obtains

X flda[1+a(1—a)q2/ro]*f’2. (AB)
0

Il_r—é/z

© o\
1+§2 (—q> E(i)Y(i)}, (A13)

i=1 lo
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e [ —Q2 iH . 1 €,
L=A"1+=> | =5 | E()Y(i) Q(q,ro)=—Kgl 1+ =(1—€e/2)Inry— = In?r,
251\ A 2 8
_A- P —0q? ! 1 1 € el
= €1+ z OA O(I'O) (A14) —E —E—Enro
A similar calculation for the integrals appearing 1§ and q? ' ) i
7, leads to the result XE (—D)'| —| E([1+eY1()]],
2A—f - (A19)
Tat+T,= O(ro)+ 2 ) O(rp). (A15)
1-ei2 with
Neglecting terms 00O(r) is consistent with the initial sim- i-1
plification made for the bare propagator, £42). The pref- Yq(i)= > (A20)
actor of the integrals can be written as =12)
ewml2 2(1—€l2 2. Result f ishi
F(Z—G/Z)F(E/Z)Z T ( ) ' (AlG) esult Tor vanisning mass
n(em/2) € For the casea,=0 the integralQ) can be written after a

: . . calculation similar to the last section to all orderseiras
where for later calculations we will use the expansion

/2 2.2 Qa.0=K em2 [1—el2  T(1—€l2)?
— 4 q,U)=KgZ q ¢ _
sinen2) LT 2z 1O (AL7) sinemn/2)| e F(2—e
. . . 1+€/2
Putting everything together, setting the cutoffAo=1, the — +0(g?) |, (A21)
integral Q) is given, to all orders imj? and e, by
o ) . enl2 { €2 _6/2 ) whereA =1 has been set for simplicity. Using the expansion
Q:ro)=—Kag 2
12 '(1-el2
sin(ea/2) TA=e2r | eh (1 2202+ 0(), (A22)
o\ i I'2-e)
—5/2(1_6/2 2 TS I R
p2) (-1 To EMY (). the value ofQ2(q,0) is given by
(A18)

Kyq
0(q.0)=—[e(1- m2112)— (2+ €)Ingq+ € In’q]
The result, to first order i, as sufficient for the calculation

of the scaling function up to two loops, is given by +0(€%,02). (A23)
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